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Abstract. Based on a micromagnetics model, we develop a method through which quantitative information
on the volume-averaged mean-square magnetostatic stray field 〈|Hb

d|2〉v due to non-zero divergences of the
magnetization M within the bulk of a ferromagnetic body can be obtained by analysis of magnetic-field-
dependent small-angle neutron scattering data. In the limit of high applied magnetic field Ha, when the
direction of M deviates only sligthly from Ha, we have estimated a lower bound for 〈|Hb

d|2〉v as a function
of the external field, and we have applied the method to bulk samples of nanocrystalline electrodeposited
Ni and Co and coarse-grained polycrystalline cold-worked Ni. The root-mean-square magnetostatic stray
field, which is inherent to a particular magnetic microstructure, shows a pronounced field dependence, with
values ranging from about 5 to 50 mT. Even at applied fields as large as 1.7 T, the quantity µ0〈|Hb

d|2〉1/2
v

of nanocrystalline Co is still 24 mT, which suggests that contributions to the total magnetostatic field
originating from the bulk are significant in nanocrystalline ferromagnets; therefore, 〈|Hb

d|2〉v cannot be
ignored in the interpretation of e.g. measurements of magnetization or spin-wave resonance. A comparison
of 〈|Hb

d|2〉v with the volume-averaged mean-square anisotropy field reveals that both quantities are of
comparable magnitude.

PACS. 61.12.Ex Neutron scattering techniques (including small-angle scattering) – 75.30.Gw Magnetic
anisotropy – 75.50.Tt Fine-particle systems; nanocrystalline materials – 75.75+a Magnetic properties of
nanostructures – 81.07.-b Nanoscale materials and structures: fabrication and characterization

1 Introduction

When a magnetic field Ha is applied to a ferromagnetic
body, the magnetic moments inside the body begin to
align along Ha and eventually, when the magnitude of
Ha is large enough, all moments become aligned with
the external field. However, several forces can give rise
to torques on the magnetic moments that prevent them
from reaching a state of perfect alignment. The most ob-
vious force results from the combined effect of magne-
tocrystalline and magnetoelastic anisotropy. Additionally,
magnetostatic stray fields can exert a torque on the mag-
netization M whenever divergences of M arise within the
volume or at the outer surface of the ferromagnet. There
are many instances where deviations from the perfectly
aligned state of magnetic moments are of importance:
historically, the most prominent example is the magne-
tization profile across a domain wall [1], but phenomena
such as domain nucleation (see, e.g., Ref. [2] and refer-
ences therein), the effect of lattice defects on the approach
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to magnetic saturation [3–9], spin waves [10,11], the so-
called “magnetization ripple” in thin films [12–15] and the
magnetic properties of amorphous ferromagnets [16–18]
remain the subject of contemporary research. Brown’s
equations of micromagnetics [19–21], which are non-linear
partial integro-differential equations with complex bound-
ary conditions, are used to describe the magnetic mi-
crostructure, i.e., the spatial variation of the spin ori-
entation on the scale of roughly 1 − 1000 nm [22], in
most of those investigations. Rigorous closed-form solu-
tions to these equations are known for relatively few cases
such as the nucleation problem [2]. Due to the compli-
cated nature of Brown’s equations, it is often necessary
to make simplifying assumptions; among these are e.g.
the disregard of magnetoelastic anisotropy, the lineariza-
tion of the equations in the regime near magnetic satu-
ration, and the neglect of the magnetostatic stray field
that results from ∇ · M �= 0 from within the bulk. In
this study, we are concerned with the latter quantity,
and we investigate the question how strong the magne-
tostatic dipole-dipole interaction field (due to ∇ ·M �= 0)
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actually is in real specimens. To that end, we provide
a theoretical treatment that enables computation of a
lower bound for the magnetostatic stray field by combin-
ing the high-field solution of the basic equations of mi-
cromagnetics with the results of field-dependent magnetic
small-angle neutron scattering (SANS) measurements. In
particular, we investigate the strength and magnetic-field
dependence of the volume-averaged mean-square magne-
tostatic stray field, and we scrutinize how it compares in
magnitude to the perturbing field that arises from the
magnetic anisotropy.

Nanocrystalline (nc) and microcrystalline cold-worked
materials are particularly suited to such a study, since
fluctuations of the magnetization present in these ma-
terials evolve on a length scale that can be probed by
SANS, a technique having a spatial resolution of typi-
cally 1–500 nm. For instance, single-component, single-
phase nc ferromagnets constitute dense arrangements of
polyhedral grains with an average crystallite size D of
typically 10 nm. Owing to the reduced grain size, the di-
rection and/or strength of the magnetic anisotropy field
changes randomly on a length scale of the order of D,
thus giving rise to a static magnetic microstructure that
is highly nonuniform on a nanometer scale. As a result
of this nonuniformity, the static magnetic microstructure
in nc magnets gives rise to a strong elastic magnetic neu-
tron scattering signal at small scattering angles. In the
light of the recent availability of high-purity, porosity-free
electrodeposited nc soft magnets [23], characterized by a
favorably high ratio of interesting magnetic scattering to
nuclear background, nc magnets seem especially attractive
for studies by magnetic SANS.

In fact, with such samples it has become possible to
combine predictions for the magnetization distribution
M(x) from micromagnetics theory [19–21] with experi-
mental magnetic SANS in a straightforward way, similar
to what is established in the fields of ferromagnetic and
spin-wave resonance. The approach of combining micro-
magnetics computations with SANS was previously used
to investigate the arrangement of dislocations in plasti-
cally deformed Fe single crystals [24], and it has been
applied to study the magnetic microstructure of nc elec-
trodeposited Ni and Co [25–29].

The paper is organized as follows: Section 2 describes
the basic formalism used to obtain the volumetric mean-
square magnetostatic stray field. Section 3 presents the
micromagnetics model. In Section 4, we discuss the SANS
cross-section of nc ferromagnets near saturation, and we
establish the connection between micromagnetics and ex-
perimental SANS data to yield the volume-averaged mag-
netostatic stray field. Finally, Section 5 presents and dis-
cusses the results.

2 Magnetostatics

According to the well-known expression for the magne-
tostatic potential of a distribution of magnetic volume
and surface charges [30], we can separate the total de-
magnetizing field Hd(x) into a contribution Hb

d(x) due to

∇·M �= 0 from within the volume of the sample and into a
contribution Hs

d originating from the free magnetic poles
at the macroscopic sample surface, i.e., Hd = Hb

d + Hs
d.

At high applied fields Ha, when the magnetization M is
only slightly misaligned from the direction of Ha – the
situation that is considered throughout this paper – the
vector Hs

d can (for a body of ellipsoidal shape) be as-
sumed to be independent of position x within the ma-
terial, and Hs

d is therefore approximated by the uniform
field Hs

d = −Nd 〈M〉, where Nd denotes the demagnetiz-
ing factor that depends on the sample shape, and 〈M〉
is the macroscopic mean magnetization, which is directed
along Ha. The magnitude of 〈M〉 is |〈M〉| = Ms |〈cos δ〉|,
where Ms denotes the magnitude of M, and δ is the local
angle of misalignment of M relative to Ha. In the small-
misalignment regime δ � 1, and Hs

d
∼= −NdMs.

The contribution of the bulk to Hd is obtained by solv-
ing the basic equations of magnetostatics inside the ferro-
magnetic body [31],

∇ ·M(x) = −∇ ·Hb
d(x) with ∇× Hb

d(x) = 0 . (1)

Since in our linear micromagnetics theory (see Sect. 3 be-
low) the sample is treated as infinitely large, it proves to be
convenient to express the magnetization and the fields in
terms of their Fourier transforms. By introducing m(q) as
the Fourier coefficient of Mp(x)/Ms, which represents the
reduced transversal fluctuation of M(x) from its position-
independent average 〈M〉 (compare Fig. 1a),

Mp(x)
Ms

=
M(x) − 〈M〉

Ms

=
1

(2π)3/2

∫
m(q) exp(iq · x) d3q , (2)

and by writing Hb
d(x) as a Fourier integral with corre-

sponding Fourier coefficient hb
d(q),

Hb
d(x) =

1
(2π)3/2

∫
hb

d(q) exp(iq · x) d3q , (3)

we find the following solution to equation (1) [5,10]:

Hb
d(x) = − Ms

(2π)3/2

∫
[m(q) · q]q

q2
exp(iq · x) d3q , (4)

where q denotes a wave vector with modulus q. By com-
parison of equations (3, 4), we can identify the Fourier
coefficient of Hb

d(x) as hb
d(q) = −Ms q

−2 [m(q) · q]q.
The volume-averaged mean-square magnetostatic

stray field 〈|Hb
d|2〉v is defined by

〈|Hb
d|2〉v :=

1
V

∫
V

|Hb
d(x)|2 d3x , (5)

where V is the sample volume. By use of the following
property of Fourier integrals [32],∫

|Hb
d(x)|2 d3x =

∫
|hb

d(q)|2 d3q , (6)
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Fig. 1. (a) and (b) Sketches explaining the meaning of the
angles α, ϑ, ξ and ψ. In the small-misalignment approxima-
tion, the spatial variation of Mp(x) and of m(q) is confined
to the plane perpendicular to the applied magnetic field Ha.
The orientation of the wave vector q is specified by the angles
ϑ and ξ. The anisotropy field Hp(x) and its Fourier coeffi-
cient h(q) vary in the x-y-plane. The unit vectors along the
Cartesian coordinate axes are denoted by ex, ey and ez. (c)
Scattering geometry used in the SANS experiments. The scat-
tering vector q lies in the plane perpendicular to the incoming
neutron wave vector k0 (ξ = π/2).

we can rewrite equation (5) as

〈|Hb
d|2〉v =

M2
s

V

∫
|m(q)|2 cos2 α d3q , (7)

where α is the angle between m and q. Obviously, for a
fully saturated sample Mp(x) = 0 and, correspondingly,
〈|Hb

d|2〉v ≡ 0.
By inspection of equation (7) we see that the mag-

netostatic field arises from those Fourier components of
the magnetization with m parallel to q. The magneto-
static field is associated with a self energy proportional
to
∫
space

|Hb
d|2 d3x [33], and, as a consequence of the pole

avoidance principle, the equilibrium configuration of the
spin system will exhibit a tendency to minimize fluctua-
tions with m ‖ q. In other words, the effect of the mag-
netostatic interaction on the magnetic microstructure is
to suppress selectively those Fourier components of M
for which m ‖ q. By neglecting the magnetostatic field,
one will therefore in general overestimate the mean-square
misalignment angle and underestimate the net magnetiza-
tion.

Equation (7) represents a central result, since it relates
〈|Hb

d|2〉v to the Fourier coefficient m(q) of the transversal
component Mp(x) of the magnetization and, as shown be-
low, the function |m(q)|2 cos2 α can be related to data ob-
tained from magnetic-field-dependent SANS experiments.
However, with regard to experiment, it is important to
note that the macroscopic differential spin-misalignment
scattering cross-section dΣmag/dΩ, which is measured
by SANS near saturation, is proportional to the prod-
uct |m(q)|2 sin2 α [26,28,29]. Consequently, equation (7)
cannot be evaluated directly in terms of the measured
magnetic SANS cross-section. Rather, the computation of
〈|Hb

d|2〉v relies upon an expression for m(q) derived from
theory.

3 Micromagnetics

It is straightforward to derive an equation for m(q) by
making use of the theory of micromagnetics [19–21], which
permits computing the magnetization vector field as a
function of position. The balance-of-torques equation in
static micromagnetism reads [19–21]

(
2A

µ0M2
s

{∇2Mx ,∇2My ,∇2Mz} + H(x) + Hp(x)
)

× M(x) = 0 , (8)

where A is the exchange-stiffness constant, µ0 the per-
meability of free space, Mx, My and Mz denote the
Cartesian components of the magnetization vector M(x),
and H(x) = Ha + Hb

d(x) − Nd〈M〉 represents the mag-
netic field, with Ha the applied magnetic field. Hp(x) =
−µ−1

0 {∂ωa/∂Mx, ∂ωa/∂My, ∂ωa/∂Mz} is the anisotropy
field, the derivative of the anisotropy-energy density ωa

with respect to the components of M, which are subject
to the condition |M| = Ms. Generally, ωa is a function
of the position x and of powers of the components of M,
i.e., ωa = ωa(x,M(x,Ha)). In the small-misalignment ap-
proximation, changes in ωa due to a reorientation of M
are small, and, therefore, ωa can be assumed to depend
only linearly on the components of M [3]. As a conse-
quence, the resulting anisotropy field Hp is constant with
respect to M and therefore does not depend on Ha, im-
plying that Hp = Hp(x). Equation (8) states that at
static equilibrium the torque on each magnetic moment
arising from the combined effects of (i) the exchange in-
teraction, (ii) the magnetic field and (iii) the anisotropy
field vanishes, resulting in a magnetic microstructure char-
acterized by an alignment of the magnetization M(x)
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parallel to the vector given in the parentheses of equa-
tion (8). Furthermore, the boundary conditions of equa-
tion (8) on the external sample surface can be ignored,
since the specimen is assumed to be infinitely extended.
According to Brown [3,34], such a supposition is justified
whenever the sample dimensions are large compared to
the static ferromagnetic correlation length lC . Our recent
SANS measurements on nc Ni and Co samples [35,36] in-
dicate that lC varies between about 10 nm (at high applied
fields) and 100 nm (at small applied fields) – a length scale
that is small compared to a typical scattering volume of
10 × 10 × 0.5 mm.

Solutions to equation (8) have been derived in various
contexts (see, e.g., Refs. [19–21] and references therein).
The relevant solution of equation (8) in the limit of small
misalignment can formally be expressed in terms of the
Fourier coefficient m(q) of the reduced transversal mag-
netization Mp(x)/Ms defined by equation (2) [29]. By
assuming Ha (and, therefore, 〈M〉) directed along the
z-axis and for a general orientation of the wave vector
q = {qx, qy, qz}, we obtain the following expressions for
the Cartesian components of m(q):

mx(q) =
hx(q)

(
Heff +Ms

q2y
q2

)
− hy(q)Ms

qx qy
q2

Heff

(
Heff +Ms

q2x + q2y
q2

) ,

my(q) =
hy(q)

(
Heff +Ms

q2x
q2

)
− hx(q)Ms

qx qy
q2

Heff

(
Heff +Ms

q2x + q2y
q2

) , (9)

mz(q) = 0 ,

where terms of higher than linear order in Mp(x) have
been neglected.

The functions hx(q) and hy(q) in equation (9) repre-
sent the components of the Fourier coefficient h(q) of the
anisotropy field Hp(x),

Hp(x) =
1

(2π)3/2

∫
h(q) exp(iq · x) d3q , (10)

and the effective magnetic field,

Heff(q,Hi) = Hi

(
1 + l2H q2

)
, (11)

depends on q and on the magnitude of the internal field
Hi = Ha −Nd Ms. The quantity lH = [2A/(µ0MsHi)]1/2

represents the exchange length of the internal field, which
is characteristic of the length scale over which perturba-
tions in the spin structure decay [26]. Note that within the
small-misalignment approximation, i.e., |Mp/Ms| � 1,
the variation of Mp(x) and of m(q) is confined to the
plane perpendicular to Ha (see Fig. 1a). By following
the arguments on page 7 of reference [19], it is seen that
the vectors Hp(x) and h(q) also vary exclusively in the
x-y-plane (see Fig. 1b). No assumption about the partic-
ular form of the magnetic anisotropy (magnetocrystalline

and/or magnetoelastic) was made in deriving equation (9).
It is also worth noting that the SANS measurements are
performed with the incoming neutron wave vector k0 ‖ ex

oriented perpendicular to the applied magnetic field Ha,
implying therefore that the scattering vector q varies exlu-
sively in the y-z-plane (compare Fig. 1c).1 In this scatter-
ing geometry, only those Fourier components of the mag-
netization with qx = 0 are probed. Nevertheless, since the
results for 〈|Hb

d|2〉v and m(q), equations (7, 9), do not
care for a particular scattering geometry, the most gen-
eral representation for the vector q with qx �= 0 has to be
used in the further calculation of 〈|Hb

d|2〉v (see below).
Since the central goal of this study is the computation

of 〈|Hb
d|2〉v as given by equation (7), it is necessary to de-

termine |m(q)|2 cos2 α. This is achieved by specifying the
orientation of h(q) in the x-y-plane by the angle ψ, i.e.,
h(q) = h(q) {cosψ, sinψ, 0} (compare Fig. 1b), and by ex-
pressing the factor cos2 α as cos2 α = [q/q ·m/m]2, where
q = q {sinϑ cos ξ, sinϑ sin ξ, cosϑ} (compare Fig. 1a). Fi-
nally, the resulting expression for 〈|Hb

d|2〉v is

〈|Hb
d|2〉v =

M2
s

V

∫
h2(q) sin2 ϑ cos2(ψ − ξ)(

Heff +Ms sin2 ϑ
)2 d3q . (12)

In Section 4, we will see that the unknown function h2(q)
in equation (12) can be related to an experimentally mea-
surable quantity.

4 Small-angle neutron scattering as a probe
for magnetic volume charges

The magnetic SANS formalism combined with micromag-
netics theory has been successfully applied to study the
magnetic microstructure of nc Ni and Co; in particular,
information on the value of the exchange-stiffness constant
and the magnitude and spatial variation of the magnetic
anisotropy field were obtained by this method [26–29]. In
fact, we have recently shown that, in the limit of near satu-
ration, the total nuclear and magnetic SANS cross-section
dΣ/dΩ of ferromagnets, such as nc or cold-worked materi-
als, characterized by a highly nonuniform anisotropy-field
microstructure can be written as

dΣ
dΩ

(q,Hi) =
dΣres

dΩ
(q) + SH(q)R(q,Hi) . (13)

Here, dΣres/dΩ is a combined nuclear and magnetic resid-
ual scattering cross-section that takes into account SANS
caused by nonuniformities in atomic density and/or com-
position of the material, such as pores. In the limit of
small misalignment, dΣres/dΩ is independent of Hi [29].
The term SH(q)R(q,Hi) denotes the magnetic-field-
dependent, pure micromagnetic spin-misalignment scat-
tering cross-section, which is written as the product of

1 In order not to complicate the discussion, we denote with
q the wave vector as well as the scattering vector.
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the anisotropy-field scattering function SH(q) and the mi-
cromagnetic response function for SANS R(q,Hi). The
product SH(q)R(q,Hi) describes the magnetic SANS
from small transversal magnetization components Mp(x),
aligned perpendicular to the applied magnetic field, that
have been discussed in the previous sections. Both quan-
tities, dΣres

dΩ (q) and SH(q), are a priori unknown functions
of q that can be directly determined from experimental
SANS data [28,29].

In order to elucidate the magnitude and field depen-
dence of 〈|Hb

d|2〉v, the function SH(q) is of special inter-
est since, in the approach to magnetic saturation, SH is
proportional to the square magnitude of the Fourier coef-
ficient h(q) of the anisotropy field, Hp(x) being the rel-
evant quantity determining 〈|Hb

d|2〉v (compare Eqs. (10)
and (12)). As shown in references [26,28,29],

SH(q) =
8π3

V
b2mag ρ

2
aM

−2
s h2(q) , (14)

where bmag denotes the atomic magnetic scattering length,
and ρa is the atomic density. SH(q) carries informa-
tion about the magnitude and spatial variation of the
anisotropy field and, therefore, reflects microstructural de-
tails of a material, such as grain size, microstrain or lat-
tice defects. The derivation of equation (14) assumed that
SH does not depend on the orientation of the scattering
vector q; therefore, equation (14) strictly applies only to
statistically isotropic microstructures.

The central result of this paper is obtained by inserting
the solution for h2(q) of equation (14) into equation (12).
Averaging over the orientations of the anisotropy field
in the plane perpendicular to Ha, (2π)−1

∫ 2π

0
〈|Hb

d|2〉v dψ,
and performing the integration of equation (12) with re-
spect to the angles ϑ and ξ (d3q = q2 sinϑ dϑ dξ dq) yields
the final expression for the volume-averaged mean-square
magnetostatic stray field 〈|Hb

d|2〉v:

〈|Hb
d|2〉v =

M2
s

8π2 b2mag ρ
2
a

∞∫
0

SH(q) q2 p2

×
(

(1 + 2p) ln(
√
p+

√
1 + p ) −

√
p+ p2

(p+ p2)3/2

)
dq , (15)

with the dimensionless parameter p = Ms/Heff(q,Hi).

5 Results and discussion

As motivated in the introduction, we measured the SANS
signal of nc electrodeposited Ni and Co samples and that
of a cold-worked (cw) Ni sample as a function of ap-
plied magnetic field (and temperature). Previous studies
performed on these materials found, firstly, that the nc
samples are practically saturated at applied fields larger
than about 0.1 − 0.2 T [29], suggesting that the small-
misalignment approximation is valid at fields stronger

Fig. 2. Log-log plot of the anisotropy-field scattering function
SH of nc Ni, nc Co and coarse-grained polycrystalline cw Ni
(see inset) as a function of the modulus q of the scattering
vector [29].

than 0.2 T. Secondly, the measured values of the exchange-
stiffness constants and saturation magnetizations are iden-
tical to the respective single-crystal values within an un-
certainty of ± (1−2)% [29]. This supports the assumption
of materials homogeneity with respect to the exchange in-
teraction and density. As a consequence, there is no need
to consider discontinuities of the magnetization at internal
defects like grain boundaries, and it is reasonable to ne-
glect internal boundary conditions in the micromagnetics
theory. All remaining experimental details, sample charac-
terization, SANS data and the materials parameters used
in the data analysis can be found in reference [29].

Figure 2 shows the anisotropy-field scattering func-
tions of nc Ni and Co and of coarse-grained poly-
crystalline cw Ni at several temperatures used in the
computation of 〈|Hb

d|2〉v by numerical integration of equa-
tion (15) [29]. Due to the experimentally limited range of
q-values, 0.025 nm−1 � q � 0.25 nm−1, the calculated val-
ues for 〈|Hb

d|2〉v represent lower bounds of this quantity.
However, it was found that for all samples and at all fields
the integrand in equation (15) showed signs of convergence
at both ends of the integration interval (see Fig. 3), sug-
gesting that, given the above q-range, the main contribu-
tions to 〈|Hb

d|2〉v originate from real-space magnetization
fluctuations with a length scale 25 nm � 2π/q � 250 nm.
Magnetization inhomogeneities on a larger scale, for in-
stance on the domain-size level, cannot be resolved with
conventional SANS. By utilizing other techniques, like ul-
tra small-angle neutron scattering (USANS), it should
in principle be possible to reach q-values as small as
0.0005 nm−1 [37], which would enable 〈|Hb

d|2〉v to be deter-
mined with higher accuracy. Similarly, a stronger applied
magnetic field would increase the maximum q-value [29].
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Fig. 3. The integrand of equation (15) multiplied by the con-
stant prefactor at selected applied magnetic fields plotted as
a function of q for nc Ni, nc Co and coarse-grained polycrys-
talline cw Ni (see inset). Lines are guide to the eye, and the
respective values of the materials parameters were taken from
reference [29].

Our results for 〈|Hb
d|2〉v are displayed in Figure 4, in

which the root-mean-square magnetostatic field 〈|Hb
d|2〉1/2

v

(in units of mT) is plotted as a function of the internal
field Hi.

Note that the error bars shown in Figure 4 arise
from the uncertainty in SH(q). Although the small-
misalignment approximation is not satisfied at fields below
≈ (0.1− 0.2)T, the experimental SANS cross-sections re-
main in good agreement with theoretical predictions down
to the lowest fields investigated [29]. This indicates in par-
ticular that the linearized solution, equation (9), of the
balance-of-torques equation continues to provide mean-
ingful estimates for the Fourier components m(q) and,
therefore, for the root-mean-square magnetostatic field.
For this reason, we have included the estimated values
of 〈|Hb

d|2〉1/2
v for the entire experimental range of applied

fields in Figure 4, including values µ0Hi � (0.1 − 0.2)T.
For all samples investigated, the values of 〈|Hb

d|2〉1/2
v

decrease when the internal field Hi is increased, since the
contribution of the volume charges ∇ · M to the total
magnetostatic field is expected to decrease for an increas-
ing degree of uniformity of the magnetic microstructure.
The values of 〈|Hb

d|2〉1/2
v are largest for nc Co (Fig. 4a),

since in Co stronger anisotropy fields (compared to Ni, see
below) perturb the magnetization [29], resulting in a rela-
tively less uniform magnetization distribution M(x) and,
consequently, in larger values for 〈|Hb

d|2〉1/2
v . A similar ar-

gument applies to explain the temperature dependence of
〈|Hb

d|2〉1/2
v observed for nc Ni (Figs. 4b and c). At T = 5 K

stronger anisotropy fields result in a more inhomogeneous
M(x) than at room temperature and, thus, in larger val-
ues for 〈|Hb

d|2〉1/2
v [29]. Coarse-grained polycrystalline cw

Ni manifests the lowest values for 〈|Hb
d|2〉1/2

v (Fig. 4d).
This is explained by the more homogeneous nature of the
magnetic microstructure in microcrystalline Ni than in nc
Ni over the length scale of 25−250 nm estimated above. In
contrast to nc Ni, where the magnetization is perturbed
by inhomogeneous anisotropy fields on a nanometer scale
(grain size: D = 49 nm [29]), fluctuations of M in coarse-
grained Ni with a macroscopic grain size are expected to
be present on a much larger length scale, giving rise to
a magnetic SANS signal approaching the resolution limit
of the technique. This is consistent with the overall lower
values of SH (compare Fig. 2) and the weaker magnetic
SANS signal in this material (compare Fig. 5 in Ref. [29]).

The magnetic microstructure at equilibrium is
governed by a balance of the various torque terms
represented in equation (8). It is of interest to compare
the action of the torque arising from the magneto-
static field to that caused by the main perturbing
term, the field Hp(x). To this end, we compare the
magnitude of the root-mean-square perturbing field to
that of the root-mean-square magnetostatic field. By
defining the volume-averaged mean-square anisotropy
field as 〈|Hp|2〉v := V −1

∫
V
|Hp(x)|2 d3x, assuming an

isotropic microstructure and combining equations (6),
(10) and (14), we arrive at an expression for 〈|Hp|2〉v
that can be evaluated based on the experimental data for
SH(q) [26]. Near saturation, the quantity

〈|Hp|2〉v =
M2

s

2π2 b2mag ρ
2
a

∞∫
0

SH(q) q2 dq (16)

is a measure for the average perturbing field that acts
as a torque on the magnetic moments and tries to de-
flect them from the perfectly aligned state.2 Approximate
lower bounds for 〈|Hp|2〉1/2

v were obtained by numerical
integration of equation (16) using the experimental data
for SH(q) shown in Figure 2. The results for 〈|Hp|2〉1/2

v are
displayed in Figure 4 as horizontal lines, respectively [29].
In contrast to 〈|Hb

d|2〉v, which depends on the internal
field Hi through the effective magnetic field Heff (com-
pare Eq. (11)), 〈|Hp|2〉v does not depend on Hi, because
the underlying anisotropy-energy density ωa was assumed
to depend linearly on the components of M. A detailed
discussion of the experimental values for 〈|Hp|2〉1/2

v and
a comparison with the respective theoretical orientation-
averaged anisotropy fields in single crystals can be found
in reference [29].

2 From its definition as the derivative of the anisotropy-
energy density with respect to the components of M, the per-
turbing field Hp has components normal to M, which lead to a
torque, and a component parallel to M, which has no physical
effect at all, since its cross product with M in equation (8) van-
ishes. Since SANS measures the Fourier components of the spin
misalignment resulting from the perturbation by the nonuni-
form anisotropy, a SANS measurement provides information on
the normal components of Hp exclusively. The result of equa-
tion (16) (horizontal lines in Fig. 4) refers to the expectation
value of this quantity.
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Fig. 4. Lower bounds for the volumetric root-mean-square magnetostatic stray field 〈|Hb
d|2〉1/2

v , as determined from equation (15)
for nc Co (a), nc Ni (b, c) and for coarse-grained polycrystalline cw Ni (d) as a function of the internal field Hi. Lines are guide
to the eye. The horizontal line in each figure indicates the respective value of the volumetric root-mean-square anisotropy field

〈|Hp|2〉1/2
v (see text).

Comparing the results for 〈|Hp|2〉1/2
v and 〈|Hb

d|2〉1/2
v ,

we see that the magnetostatic field takes on values of
30−50 % of the anisotropy field at the lowest applied fields.
In other words, the magnetostatic field is comparable in
magnitude to the anisotropy field. From the discussion in
Section 2 it is obvious that the effects of the two fields
are opposite: Hp is the origin of disorder in the spin sys-
tem, whereas Hb

d suppresses the spin-misalignment fluctu-
ations. Since the two terms are of comparable magnitude,
neglecting Hb

d [38] can lead to substantial errors in micro-
magnetics computations of nc ferromagnets, even under
near saturation conditions. It should also be noted that
〈|Hb

d|2〉1/2
v increases as the internal field Hi decreases, and

that 〈|Hb
d|2〉1/2

v of the nc samples becomes larger than Hi

for applied fields below typically µ0Hi � 40 mT. This fur-
ther supports our conclusion that the effect of Hb

d on the
equilibrium configuration of the spin system is at least
comparable to that of the remaining terms in the balance-
of-torques equation, and that the neglect of Hb

d may have
serious consequences for the predictions of micromagnetics
models.

As a final remark, we suggest that our results
might affect the analysis of magnetization and spin-
wave resonance measurements. For instance, it is well
known [39,40] that the nonuniform surface demagnetiz-
ing field of non-ellipsoidal bodies influences the spin-wave-
excitation properties of a material, and, similarly, we
would expect that the magnetostatic field Hb

d due to vol-
ume charges will also have a measurable effect on the ex-
citation properties of spin waves in nc ferromagnets.

6 Summary and conclusions

In the near-saturation range, a combination of micromag-
netics theory and SANS data provided the main result
of this study, equation (15), from which a lower bound
for the volume-averaged mean-square magnetostatic stray
field 〈|Hb

d|2〉v arising from regions of ∇ · M �= 0 in the
bulk of a ferromagnet can be computed. 〈|Hb

d|2〉v was
determined for nanocrystalline (nc) electrodeposited Ni
and Co and for coarse-grained polycrystalline cold-worked
(cw) Ni from experimental SANS data by determining
the respective anisotropy-field scattering function SH(q),
which contains information about the microstructure of
the anisotropy field. The magnitude of µ0〈|Hb

d|2〉1/2
v is

largest in the nc samples, taking on values in the range
10−50 mT, and smallest in microcrystalline Ni, for which
it lies between 5 and 20 mT. Therefore, the reduction
of relevant microstructural length scales down to the
nanometer range is accompanied by a concomitant en-
hancement of the strength of the effect of volume charges.
We suggest that 〈|Hb

d|2〉v will affect micromagnetic com-
putations and magnetic measurements on nanostructured
magnetic materials at all experimentally relevant fields.
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schaft (Sonderforschungsbereich 277). A. Michels acknowledges
financial support by the DAAD through a HSP-III scholarship.
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